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A general expression is derived for the fluid force on a body of simple shape moving 
with a velocity v through inviscid fluid in which there is an unsteady non-uniform 
rotational velocity field uo(x , t )  in two or three dimensions. It is assumed that the 
radius is small compared with the scale over which the strain rate changes, though 
for the sphere it is also assumed that the changes in the ambient velocity field over 
the scale of the sphere are small compared with the velocity of the body relative to 
the flow. Given these approximations it is shown that the effects of the rate of change 
of the vorticity of the ambient flow is of second order and can be neglected. However 
the rate of change of the irrotational straining motion is included in the analysis. It 
is shown that the inertial forces derived by many authors for irrotational flow can be 
simply added to a generalization of the lift force derived by Auton (1987) in a 
companion paper. It is shown how this lift force is made up of a rotational and an 
inertial or added-mass component. For three-dimensional bluff bodies the latter is 
generally larger (by a factor of three for a sphere), and can be simply calculated from 
the added-mass coefficient. For illustration, the general expression is used to derive 
formulae for (i) the motion of a spherical bubble in a steady non-uniform flow to 
contrast with the motion in an unsteady flow, and (ii) the motion of rigid volumes 
of neutral density across an inviscid shear flow. These results show how added-mass 
(and lift) forces lead to  different motions for a sphere and a cylinder. The general 
expression is useful in two-phase flow calculations, and for indicating the forces and 
motions of 'lumps of fluid' in turbulent flows. 

1. Introduction 
Students of fluid mechanics are generally familiar with the results for the force F 

on a rigid cylinder or sphere with volume Y" moving in an inviscid fluid with density 
p with a velocity v ,  while the fluid has a spatially uniform ambient velocity 

where C, is the added-mass coefficient (Batchelor 1967). (Y" is the area for two- 
dimensional flow.) 
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However, in rotational flows there are different forces. For example, a stationary 
circular cylinder in a steady shear flow ( - U - w, y, 0) experiences a lift forcc 

F, = pVCLUw0,  (1.2a) 

where CL = 2 .  But if the cylinder is placed in a swirling flow with the same vorticity 

F2/ = pVUw,.  (1.2b) 

Note the faotor is 1 (Batchelor 1967, pp. 539-543). No general formula has been given 
for the casc where the cylinder moves with velocity V .  

There are many basic and practical problems in fluid mechanics where it is 
desirable t,o have these formulae in a generalized form to allow for spatial and 
temporal variations of u,. The generalizations are only likely to be of the form of (1 .1)  
or (1.2) if the diameter of the body is small compared with the scale over which there 
are changes in the gradients of the ambient (or undisturbed) fluid velocity. 

Many analyses and suggestions have been made for the form of such ‘generalized ’ 
force laws. Regrettably very many have been wrong, particularly in text books on 
two-phase flows. These errors and controversy have centred on the definition of the 
correct acceleration for the fluid. How should du,/dt be generalized to allow for the 
spatial variations in u, and the body’s motion ? Three suggestions have been made 
in the literature involving the undisturbed fluid velocity U ( t )  = uo(R, t )  a t  the body’s 
location R( t )  (see figure I ) :  

(-U-L wo y, $wn x ) ,  the force is 

the change of uo seen by the ‘body ’, (d/dt denotes the time derivative in a frame 
moving with the body) ; 

or )x=R , (1.4) 

no obvious interpretation : 

or 

the change of u, ‘seen’ by a fluid element in the absence of the body (where D/Dt  
denotes a derivative following a fluid element). (This controversy was reviewed by 
Thomas et al. 1983.) 

The next question is whether the generalization of du,/dt is affected by the 
vorticity of the undisturbed flow, and whether the lift force can be suitably 
generalized. These are the questions that we shall answer in this paper. First we 
review what has been done already. 

Taylor (1928) and Tollmien (1938) showed that the classical analysis for the rate 
of change of the kinetic energy of the flow around bodies in irrotational, non-uniform 
flows could be used to calculate the forces on the bodies. Taylor (1928) calculated the 
inviscid flow around a sphere in a steady irrotational non-uniform flow (uol (x l ) ,  
-x2 duol/tlzl, 0) and showed that the body (on the plane x2 = 0) experiences a force 

The investigations of Taylor (1928) and Tollmien (1938) also showed this to be 
correct for a body of arbitrary shape when thc relative direction of the flow is parallel 
to any one of its axes of permanent translation, so that it would experience no 

p( 1 + C,) “ v U I  aul/axl.  
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FIGURE 1 .  A rigid body with volume Y a t  R(t )  moving with velocity u ( t )  through a non-uniform 
velocity field u ( x ,  t ) .  +, streamlines; .--.+, position vector from the origin; ---+, body's 
track ; ---$, body's velocity (its acceleration is duldt); -, velocity of the undisturbed flow, 
uo. At the particle u,, = U(t) .  (Its rate of change, seen by the particle is dU/dt); <-*;, the fluid volume 
a t  time t + & ,  which coincided with the body a t  time t .  (Its acceleration is DU/Dt.) 

couples in a uniform stream. If the body possesses point symmetry, and if straining 
motion of the flow is uniform, the forces depend only on the virtual-mass tensor? for 
that body. Taylor performed some ingenious wind-tunnel experiments to confirm 
that the inviscid theory gave the correct equilibrium positions of non-symmetric 
bodies in converging, diverging and curved flows. 

Their analysis for irrotational motion, essentially rediscovered and generalized by 
Voinov, Voinov & Petrov (1973), Landweber & Miloh (1980), L'huillier (1982) and 
Auton (1983), yields the following expression for the force F :  

where p is the density of the fluid, P is the pressure in the ambient flow, and C, is 
the added-mass coefficient. F can also be written in terms of the acceleration in the 
ambient flow, a t  the location of the body's centre, DU/Dt, and in terms of dvldt, the 
rate of change of the velocity of the body. Then we recover a form similar to that of 
(1.5), i.e. 

The contribution to the force by the term - V V P  in (1.6) is analogous to a 
'buoyancy force ' (Batchelor 1967). 

Taylor's and Tollmien's results were overlooked by some later research workers 
studying forces on particles and bubbles, who assumed that the inertial forces on the 
body, induced by the velocity field u,  depended on the particle velocity v as well as 
dvldt. 

When a body moves in a rotational flow, the effects mentioned above may be 
present, but there will be a third force contributed by the lift effects. These lift forces 
are caused by the interaction between the vorticity and the relative velocity of the 
body with respect to the undisturbed flow. 

t To first order in small quantities if the body is not point-symmetric, otherwise exactly 
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Auton (1987) has calculated the lift force FL on a sphere of volume V a t  rest in 
a simple shear flow, assuming a weak shear, with vorticity o which changes slowly 
with time. (These terms are defined more precisely in $3.) If the upstream velocity 
is uo, FL = pCL Y“u0 x W .  

The basis of Auton’s calculations is Lighthill’s (1956) ‘ Drift function method ’, which 
evaluates bhe vorticity change a, due to  the stretching of a uniform upstream 
vorticity w around an obstacle in a uniform flow. 

The aim of this paper is to demonstrate that the expression for the lift force given 
by Auton has the same form when the flow is accelerating, and that the forces 
associated with the acceleration of the flow, hitherto only calculated for irrotational 
flow, can be added to the lift force. Auton (1983) suggested that such a generalization 
should be valid, without a detailed examination of its validity, and thence stated 
a general expression for the net force on a sphere: 

(1.8) 

where DU/Dt and U are defined in (1.5) and in figure 1. 
In $ 2  of the paper we derive the expression (1.9) exactly in the case of a cylinder 

accelerating in a two-dimensional, unsteady flow field as long as there is a linear 
variation of the unperturbed flow field, but these variations over the scale of the 
body do not need to be small. The vorticity distribution is constant and is therefore 
(in this case) known everywhere in the flow. The resultant force on the cylinder can 
be calculated exactly without assuming a weak shear flow. (The analysis of the flow 
field is quite standard, but a general formula for the force appears to be new.) 

The problem of a sphere accelerating in a rotational straining flow is considered 
in $3. We show that the general expression (1.9) is still valid in this case in the limit 
of a weak slowly varying shear flow. The resultant force on the sphere can be 
calculated to  first order in the spatial derivatives of the unperturbed flow. We show 
surprisingly that even in a shear flow the added-mass effects are important. Their 
effect on the force is greater than that of the vorticity distortion. 

There are many applications of this apparently rather idealized flow. First, when 
large bluff bodies accelerate, the forces induced by the inviscid effects are often 
comparable with or larger than the drag forces. In  fact Taylor’s (1928) and 
Tollmien’s (1938) studies were partly motivated by the need to estimate the forces 
on the unsteady motion of large airships in non-uniform flows. More recently, 
inviscid theory of flow round bodies has been applied to forces on marine structures 
in waves or currents, with or without motion (e.g. 8arpkaya & Isaacson 1981). 

For smaller bodies this theory has been applied to bubbles, which, in sufficiently 
clean water and at high enough Reynolds number, can move as if the flow were 
inviscid. The general expression (1.9) has been used to model the motions of bubbles 
in the flow around a single horizontal vortex (Thomas et al. 1983) and of bubble; in 
the unsteady vortices of a vertical shear layer (Sene 1985; Hunt et ul. 1988). 
Beyerlein, Cossmann & Richter (1985) and Auton (1983) have shown that the lift 
forces and the transverse pressure gradients play an important role in determining 
the distribution of bubbles in vertical turbulent pipe flows. 

The general expression (1.9) is also useful in enabling us to calculate the forces on 
fluid volumes as they move across a shear flow. Prandtl (1925) supposed that lumps 
of fluid with finite volume move through a shear flow over a ‘braking distance’ and 
transfer momentum across the flow. But most discussions of mixing-length theory 
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omit to mention how these forces are partly caused by the inertial force required to 
accelerate the ‘added mass’ around the ‘lump of fluid’ as i t  moves into a layer with 
greater velocity, and by the lift forces on the ‘lump of fluid’ as it moves across the 
shear flow. The example worked out in $ 4  illustrates the processes that are implicit 
in the general formula (1.5) and may also have some use in understanding the forces 
on eddies in turbulent flow (Hunt 1987). In particular the analysis shows the 
important difference between two- and three-dimensional ‘lumps of fluid ’. 

2. Circular cylinder moving in a two-dimensional flow 
2.1. The velocity jield 

Consider an infinite cylinder of radius a ,  located a t  x = R( t ) ,  moving perpendicularly 
to its axis with a velocity u ( t )  in an inviscid and incompressible flow where the 
ambient flow field u,(x, t )  is unsteady, rotational, non-uniform and two-dimensional 
in the (x,, x,)-plane normal to the cylinder axis (see figure 2). The uniform density of 
the fluid is p. We restrict ourselves to the case of an ambient flow with uniform 
vorticity and strain rate components. This is a good approximation for more general 
flows when the linear dimensions of the body are much smaller than the lengthscales 
of the flow variations. 

The boundary-value problem to be solved is the calculation of the velocity field 
u ( x , t )  around the cylinder and the force F per unit length acting on it, where u 
satisfies the Euler equation, written in terms of a moving or inertial coordinate 
system x:  

(g+uj&)ui = Dt D ~ .  = -;ax,> 1 ap 

and the continuity equation 

aui 
ax, - = 0. 

(2.1a) 

(2 . lb)  

We shall also consider these equations expressed relative to a moving coordinate 
system x‘ with origin a t  the cylinder’s centroid. 

The boundary conditions on u specified in terms of the x and x’ coordinates are‘ 
(i) no fluid passes through the cylinder, whence 

u - n  = u - n  on lx’l = Ix-RI = a,  (2.2a) 

where n is the outward normal, and R is defined as 

assuming both 
(ii) The flow 

R ( t )  = R(O)+[ ~ ( 7 )  d7, x‘ = x - R ,  

coordinate systems coincide a t  time t = 0. 
tends to its undisturbed value far from the cylinder as 

= Uz(t)+x;eii+~eijkwixk, (2.2b) 

where U(t) = u,(R(t), t ) .  I n  a two-dimensional flow in the (xl, x,)-plane, the only non- 
zero components of eii and wj  are e,,, e zz (  = e , , ) ,  e , , ,  (elz = ez, )  and w g .  Note that eij and 
wi are uniform in space but may be functions of time. 
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+ 

FIGURE 2. Cylinder moving in two-dimensional flow. ( a )  shows the straining flow given by (2 .2b ) ;  
( b )  shows the irrotational and rotational components of the straining. It also shows a cylinder 
moving with a velocity (v,,O) a t  0. There is no force in the pure irrotational strain, but there is a 
vertical force on the cylinder in the rotational strain (equation (2.15b)). 

From the curl of ( 2 . l a )  i t  follows that in a two-dimensional flow, the vorticity of 
each fluid element does not change, i.e. 

(;+ujg)v x u = $7 D x u = 0. 

So if oj is uniform in space (i.e. aoj/i3xi = 0), it follows that 

a. . 
at 
3 = 0. (2.3a) 
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Thus while the strain rate eii may vary on the timescale of relevance ( a l o ) ,  wi does 
not. Consequently, the vorticity in the flow around the cylinder is constant 

( 2 . 3 b )  
everywhere, v x u = o .  

The solution to ( 2 . 3 b )  for u subject to the conditions (2 . lb) ,  ( 2 . 1 ~ )  and (2 .2b )  is a 
straightforward addition of a rotational velocity field (which is not affected by the 
cylinder) and an irrotational component, viz. 

u = ;m x x’+V$,  (2 .4a)  

where $ must satisfy the following equations: from (2 .2a) ,  

n.V$ = van;  

X + m ,  4 = ~ ~ x ~ e , , + ~ x ~ ;  

from ( 2 . 2 b ) ,  

a 
and from (2 . lb )  

V2$ = 0 .  

( 2 . 4 b )  

( 2 . 4 ~ )  

(2 .4d)  

For calculating the pressure field, i t  is convenient to express the solution in terms 
of the relative velocity field w = u - v seen by an observer a t  rest in the non-inertial 
frame x‘ ,  moving with the body. We obtain as a solution to (2 .4)  

where 

and 

u = w + v ,  

w = ~ o x x ’ + V $ ’ ,  

( 2 . 5 a )  

( 2 . 5 b )  

Here W is the relative velocity between the ambient flow and the body, defined 

w =  u - v .  ( 2 . 5 d )  
by 

2.2 .  The surface pressure and net force 

In  this non-inertial x‘ frame the pressure field p‘(x ,  t )  can be expressed in terms of w 
as 

- - V p ‘ =  - + ( w - V ) w  +-. 
P (Z ) 2  ( 2 . 6 a )  

Note that since the surface of the cylinder is a streamline (in the x‘ coordinate, and 
since awlat = 0 (from (2.3a)),  the variation of pressure along the surface is given 

Thence the force per unit depth is 

( 2 . 6 b )  

where the cross-sectional area xu2, is expressed for greater generality as “Y-, the 
volume per unit depth. 
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Substituting (2.5) into (2.7) yields an expression for the force component per unit 
depth 4 on the cylinder in the inertial xi frame : 

4 = p v { (  1 + c,) ( w i  + e,j y) +cLQ cijk w k  + z'i}, (2 .8 )  

where C, = 1 is the virtual (or added)-mass coefficient and C,, = 1 is the rotational 
lift coefficient. 

It is convenient to  express (2.8) in terms of the material derivative of uo6 evaluated 
a t  the instantaneous position of the centroid, which we denote by DUJDt, using the 
standard relation between DUi/Dt and the rate-of-strain tensor eij and the rate of 
rotation w :  

where Po is the pressure in the ambient flow. Note that this differs from the rate of 
change of the undisturbed fluid velocity d U/dt seen by an observer travelling with 
the body, defined by 

(2.10) 

The expression (2.8) involving the relative velocity W and its rate of change can 
also be written in terms of eii, wk and D&/Dt, using (2.5d) and (2.10), as 

(2.11) 

(2.12) 

From (2.8), (2.11) and (2.12) therefore, the force can be expressed using vector 
notation solely in terms of the body's motion and the properties of the undisturbed 
velocity field, specifically the fluid and body's accelerations DU/Dt, duldt, and the 
fluid vorticity w ; viz. 

(2.13) 

where DU/Dt = - ( l / p ) V P  is the ambient fluid acceleration at x = R ,  and U = 
u,(x = R). Note that C, is the conventional lift coefficient for shear flows which is 
related to the rotational lift coefficient C,, by 

c L - -1  - 2 ( 1 + C M ) + C L R .  (2.14) 

This shows how the magnitude of C, depends on the combined effects of the 
rotationality and inertially induced forces. For a circular cylinder C, = 2 (Batchelor 
1967, p. 543). 

The result expressed by (2.13) is an exact one as long as the strain rates and 
vorticity of the undisturbed flow u, are uniform as implied by (2.2 b ) ,  without any 
restrictions on their magnitude. The lift force for an accelerating cylinder has the 
same form as when the cylinder is a t  rest or moving with uniform velocity v.  A 
buoyancy term - (pV-m)g can be added on the right-hand side of (2.13) if 
needed. 
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2.3. Example of a cylinder in a vortex 
Consider a cylindrical or spherical body a t  x = 0 moving a t  a velocity v through a 
uniform rotational motion and an irrotational straining motion (i.e. R = 0 in the flow 
defined by (2 .2b))  (see figure 2b) .  At the centre of a forced vortex which is a purely 
rotational flow where eii = 0, the spatial gradients of velocity around the small body, 
in the frame of reference moving with the body, give rise to a rotational lift force 
-pVC,, v x w .  This is the contribution of # ~ 1 ~  in the integrand in (2.7).  

But in this frame the flow is unsteady, and far from the body the flow is 
accelerating perpendicular to  the direction of motion of the body a t  a rate -fv x w .  
This produces an ‘inertial lift force’ 

-&V(l +CM) u x 0. 

Therefore the sum of these two lift forces, which can be expressed in terms of the lift 
coefficient given in (2.14) is 

-pVC, u x w .  (2.15) 

So the usual lift coefficient C, is really a sum of the rotational lift coefficient and a 
contribution by the added-mass coefficient. 

Kote that (2.15) agrees with (2.13) because at  the centre of the vortex 
Du,/Dt = 0. 

In  contrast, for a body moving through the centre of a linear irrotational straining 
field (wt = O) ,  the force is zero because wi = 0, as well as the acceleration being zero, 
i.e. DU/Dt  = 0. The force is only non-zero when the particle is not a t  the centre, 
when u o ( R , t )  = (U(t)  =I= 0. 

In  a simple shear flow, e.g. uo = ( x ,  du,/dx,,0,0), Duo/Dt = 0 everywhere. Only 
the lift force and the body’s inertia terms (pC, Vduldt) are non-zero. 

3. A sphere in an unsteady, three-dimensional straining flow 
3.1. The velocity jield around the sphere 

Now consider a sphere of radius a ,  located a t  x = R ( t )  moving with a velocity u(t)  
in an unsteady, inviscid, incompressible, uniform straining flow field uo(x,  t )  which is 
rotational and three-dimensional. Our aim is to use a calculation of u ( x ,  t )  to derive 
a general expression for the force F( t )  acting on the sphere. 

The governing equations of the flow are given by (2.1) and the boundary 
conditions are also given by (2 .2a,  b) .  However, eij may have all nine components 
non-zero and wi have all three non-zero. 

Because the flow is three-dimensional and rotational, the solution to (2.1) requires 
us to consider the full equation for the vorticity V x u,  viz. 

(3.1) 
- v x u =  D ( V X U - V ) u .  
Dt 

Unlike the solution to (2.3b) for a two-dimensional body, two additional 
assumptions have to be made to solve the three-dimensional flow around the sphere. 
First the change of the velocity of the straining flow over the radius of the sphere, 
ullVu,,)(, is small compared with the relative velocity W = I El between the sphere and 
the fluid, i.e. 

e = allVu,II/W 4 1 .  ( 3 . 2 ~ )  
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This small parameter e is useful as a measure of any errors involved in simplification 
of the analysis. Secondly we have to assume that the time for a change of W is large 
compared with the time it takes for a fluid element to pass around the volume, 
i.e. aw w2 

li.rl a' (3 .2b )  

The upstream vorticity w is uniform in a uniform-straining flow field. But it may 
be unsteady. We can estimate the order of magnitude of the rate of change of w far 
from the body, from the vorticity equation, as 

since ( 0 1  x IIVuJ. So in the time it takes a fluid element to go past the sphere 
( X  a/W) ,  the relative change in the far-field vorticity is given by 

Thus given the assumptions of (3.2) the time rate of change of w can be ignored in 
the ensuing analysis. 

The solution to (3.1) is most easily obtained by considering the relative velocity 
field around the sphere, 

w = u - v ,  ( 3 . 4 a )  

and by expressing w as the far-field flow w o ( x , t )  and as the sum of components 
corresponding to perturbations to the different components of the far-field flow 
relative to the sphere, which are denoted by superscripts: for the uniform 
velocity'"), the extensional flow(E), the rotational flow'"). Thus 

w = A d u )  + A d E )  + A d " )  + w,, (3 .4b)  

where wo = uo - v ,  and the first two components are irrotational and the second two 
are rotational. (This decomposit' )n is possible because of the assumptions of (3.2).) 
Note that a t  the location o f '  

Therefore the potential-now solution for A W ( ~ )  and A d E )  can be simply stated 
as 

= + v q $ ( U ) ,  Aw(E) = +V$(E), (3 .5a)  

phere, x = R ,  w, = W. 

and 

(3 .5c )  

where W = u,(R, t )  - v.  

(3.2), and are such that 
Xote that the relative orders of magnitude of the components of w follow from 

w, x AW(") = O(W) ,  A d E )  x A d " )  = O(a //Vu,ll). (3.6) 
So the latter two components are smaller (by O(e)) then the former. 
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W 

FIGURE 3. Sphere moving in a two-dimensional flow. ( a )  The coordinate system ; (b )  shows how the 
vorticity parallel and normal to  the relative velocity W is distorted (when the rates of change of 
W and of the undisturbed vorticity w are small on a timescale a / !  w). 

The rotational perturbation A,(") must satisfy the vorticity equation (3 .  l ) ,  which 
in the x' coordinate system is 

( ; + ( w . v ) ) ( v x  w) = (VX W).VW. (3.7) 

This can be simplified, using the order-of-magnitude estimates in (3.3) and (3.6), 
to 

( (  W + A W ' ~ ' ) * V )  (V x W )  = ( (V  x w ) - V )  ( A w ' ~ ' )  (3.8) 

where V x w = V x w , + V  x Aw'"). 
The errors are of order 6 .  But note that the change in the local vorticity V x Aw'") 

An important conclusion of (3.8) is that the distortion of vorticity (V x Aw'")) 
around the sphere depends. only on the form of the velocity field around the body; 
its does not depend on the magnitude of W (or eij) because A W ( ~ )  is linearly dependent 
on W. Thus V x w(") is only a function of x' and w. The calculations of Aw'") then 
follow in principle from the continuity equation and the condition that Aw(").n = 
0 on the sphere's surface. 

To calculate Aw@) from (3.8) requires considering a coordinate system x" centred 
in the sphere and aligned so that one component, Ox;, is parallel to the relative 
velocity vector W = u,(R) - u. 

Let Aw(@ be separated into components induced by the far-field vorticity 
perpendicular and parallel to  W, viz. 

(3.9) 

is the same order as the far-field vorticity IwoJ. 

Aw(") = Awl") + Aw("). I1 

9 FLY 197 
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The vorticity equation (3.8) shows how the vortex line elements are distorted as they 
are advected round the sphere by the irrotational velocity field W +  A W ( ~ )  (figure 3 b ) .  
Those vortex line elements that are initially perpendicular to W undergo continuous 
stretching as they pass over the sphere. So neither the vorticity field V x AwiD) nor the 
induced velocity field Awl*) are symmetrical about the centreplane Oxix,". The order 
of magnitude of AwlQ) is just proportional to the component of o perpendicular to W 
and to the radius of the sphere, i.e. a( W x  ol/l w. The method of calculating Awin) 
in terms of the Lighthill drift function is given by Auton (1987). 

Note that the vorticity near the surface of the sphere reaches a singular value, but 
the induced velocity remains finite and of order (o(a. 

On the other hand, the vortex elements that are initially parallel to W are 
distorted symmetrically because they lie on the streamlines of the potential flow 
(figure 3b). The solution to  (3.8) for the vorticity field induced by the component of 
o that  is parallel to Wis  

(3.10) 

This induces a weak, swirling velocity field Awi") which is symmetrical about the 
centreplane (Ox; xi), since W +  A W ( ~ )  is symmetrical. 

Summarizing the results for the velocity field of the relative motion w ,  its 
components are defined by (3.4), (3.5) and (3.9). 

3.2. Calculating the force 

The force on the sphere can be calculated from the integral given in (2.7), since in this 
case also ao/a t  is zero to first order in E .  Therefore 

dv 
F = p Is r $ + t w .  w ) n  ds+pV-, dt (3.1 1 a )  

where #' = #(') + #(E) + w x i  + eii xi xi and, to 0 ( 6 ) ,  

W .  w = (W+V#(")) . {  W+V#'U'+2[V#'E'+A~'R']). (3.11 b )  

Because of the symmetry, it follows that the contributions to  the surface inte- 
gral of w . w  come from the perturbations caused by the external flow VqYE), i.e. 
(1 + C,) eig y, and by the vorticity component perpendicular to the flow Awl*). 
Since AwY) is proportional to  a( W x  o)/l Wl and since the latter force, induced by 
Awi,), is in the direction W X  o, the force must be proportional to p( W x  o ) a 3 .  

The contribution to F by the extensional flow has been obtained by previous 
authors (as cited in $ 1 ) .  So for a sphere (3.11) reduces to 

F = p V {  (1 + C,) (mi + eii W,) + C,, cijk W, wk + G i } ,  (3.12) 

where the rotational lift coefficient CLn, which has not yet been specified, is 
independent of v or uo. For a sphere C, = t .  

As in (2.13), F can be written in terms of the Eulerian velocity field determined in 

(3.13) 

where the material derivative is evaluated a t  x = R and C, is the lift coefficient 
defined by (2.14). 
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Auton (1987) has analysed the lift on a sphere fixed in a weak shear flow, 
u = (u1(x2), 0, 0). In  that case, DU/Dt = 0 and u = dv/dt = 0, so 

(3.14) 

His analysis (supported by computations) shows that C, = a. Since C, = $, this 
implies that C,, = -a, in contrast with the positive value C,, = 1 for a circular 
cylinder. Because the vorticity is distorted by the sphere, (and not by the cylinder), 
for a sphere moving with velocity v1 a t  the centre of a forced vortex (w3 > 0), the 
velocity increases over the upper half (xl > 0) for a cylinder and on the lower half 
(x2 < 0) for a sphere. This causes the rotational lift force generated by the spatial 
changes in the velocity field, 

( ipJ- (w-w)naC, ,  WXW), 

to be negative for a sphere and positive for a cylinder. The reason why the total lift 
force is positive is because the far-field velocity relative to the body is changing, i.e. 
d W/dt $; 0. In this case, as it moves into the higher velocity flow, it is displacing fluid 
with higher velocity in the x2 direction and therefore experiences a lift force. For a 
sphere this effect of 'added mass' overcomes the rotational lift force. In  fact, this 
inertial lift force is three times larger than the rotational lift force for a sphere. This 
suggests that  for most three-dimensional bluff bodies in inviscid flow C, is largely 
determined by the added-mass contribution $( 1 + C M ) .  

The result expressed by (3.13) is valid for weakly sheared flows, where only first- 
order effects in eii and wi are considered. Unlike (2.15), it is an asymptotic and not 
an exact result even when the unperturbed flow u,, is the uniform strain field specified 
by (2.26). 

4. The movement of a fixed shape in simple non-uniform shear flows 
The first example we consider is a spherical bubble with zero mass on the centreline 

of a steady converging flow defined by u,, = (U,, + ax1, - ax2, 0). Since the body has 
zero mass, no net force can be acting on it,  i.e. F = 0. Since the flow is irrotational, 
(3.13) reduces to 

Since dvl/dt = vldv,/dx and C, = $, the change in the velocity of the bubble from its 
value a t  x,, is given by 

.;(XI -4(2,,) = 3(u:,(4 -.:,(x,)). (4.1) 

Note how this result contrasts with that for a bubble in a uniform unsteady flow 
where 

(4.2) vl(t) --v,(to) = 3 (uo1(t) -u,,1(to)) 

(Batchelor 1967, $6.8). The result (4.1) is a useful upper limit for the speeds of 
bubbles in real fluids accelerating in a converging pipe flow (Kowe et at. 1988). 
Comparing (4.1) and (4.2) shows that the bubbles' increase in speed for given change 
in fluid velocity in a steady converging flow is less by at most a factor of 4 3  than 
for given change in a uniform unsteady flow. The result (4.1) is plotted in figure 4 ( b  
and it is compared with its asymptotic forms for small and large time. 

Sb-2 
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1 .o 
0 

XI 

(4 
FIGURE 4. A spherical bubble accelerating in a converging flow. ( a )  the streamlines of the flow ; ( b )  
the velocity of the bubble vl ,  and its asymptotic values compared with the liquid velocity uol. 

Consider now a volume of fixed shape with the same density as the fluid moving 
in the plane of a two-dimensional simple shear flow such as in figure 5.  Let the flow 
uo be parallel to x,, so that uol = axz and wa = -a are the only non-zero velocity and 
vorticity components for the unperturbed flow. The volume is given an initial 
velocity vo across the flow along x2 a t  the origin a t  t = 0. If the volume is spherical, 
we assume that a is small enough for (3.13) to be accurate. Since Duo/Dt is zero 
throughout the flow, the equation for the velocity u of the volume (obtained a t  once 
from (2.13) or (3.13), is 

= B ( U - u ) x o ,  (4.3) 
du 
dt 
- 

with (4.4) 

and the fluid velocity at the location of the volume is defined by 

U = u,(R(t)) = aR,(t). (4.5) 

Solving (4.3) yields a simple expression for the streamwise velocity component 
v1 of the volume 

v1 = BU, = BaR,, 

so the difference between the velocity of the lump and of the fluid as i t  moves across 
the shear layer is 

u; = (V,-U,) = (B-l)aR,. (4.6) 
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Cylinder 

uo1. "1 

FIGURE 5. Rigid bodies with the same density as that  of the fluid moving across a simple shear flow, 
uol = a x z ,  showing how the mean flow acts to accelerate the bodies in the direction of the flow. -, 
Shear-flow profile uol(xz); ---, streamwise velocities of a sphere and cylinder vl(t) a t  R,(t) = xp. 
Pjote the difference ui, between the ambient velocity and the velocity uol and the velocity v1 for 
a sphere. But as the cylinder moves across the shear flow, the streamwise forces are such that 
u; = 0. 

This is the velocity perturbation u; associated with a fluid 'lump'. The cross-stream 
velocity is given by 

vo cosh [la1 (B(l -B) t )$ ,  

vo cos [la1 (B(1 -B) t ) ; ] ] ,  

B < 1, 
, B = l ,  

B > 1, 

and R 2 ( t )  = v,(t') dt' s: 
These results differ qualitatively, depending on the value of B, owing solely to 

differences in the lift force. 
Since for a cylinder B = 1, as it arrives in the faster fluid it accelerates to the same 

streamwise velocity by the action of the rotational and inertial forces acting on it, i.e. 
u; = 0. (If this was an eddy, there would be no effective stress acting on it.) But the 
lift force in the vertical direction is zero because w1 = U,. 

But a sphere, for which B = +, does not accelerate so fast in the streamwise or x1 
direction because of its lower lift coefficient as it moves across the velocity gradient, 
so that its streamwise velocity is less than that of the fluid. Therefore u; = 
-$tauol/ax2 for a small time after its release. (If this was an eddy, it would then 
experience a drag force exerted by the surrounding fluid, and effectively exert a 
Reynolds stress.) However this velocity defect increases the lift force tending to drive 
it faster across the flow (see figure 4). (Note that in thinking about particles and 
eddies it is often assumed that in a small deflection R, the change in v1 is small, 
compared with R, a. We have seen here that this change can be calculated even when 
it is not small (Hunt 1987).) 

Note that many authors have assumed that (3.12) has the form 

(4.7) 
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where 

is the change of fluid velocity following the position of the body. For a body moving 
across a shear flow, with no streamwise relative velocity, it is true that 

- = - v x w .  d(U)x-R 

dt 

But to calculate the force on the body, the coefficient multiplying ( - v x w )  must be 
C, and not C,, because there is a lift force as well as an added-mass force acting on 
the particle. For a sphere C, = C,, in which case (4.7) gives the correct force for its 
initial movements. But C, =!= C, for a cylinder. In  general, as we showed in (4.1), 
(4.7) is quite wrong. 
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